
C U R R I C U L U M S H O W C A S E

Programmatic Perspectives, 7(2), Fall 2015: 213-229. Contact author: ‹rudy@ucf.
edu›.

Programming Perspectives in Texts
and Technology: Teaching Computer
Programming to Graduate Students in the
Humanities

Rudy McDaniel
University of Central Florida

Abstract. This article discusses how one doctoral program implemented a course designed to
teach computer programming to graduate students in the humanities. The article first discusses
recent literature that makes connections between programming and the humanities and argues
that program administrators may wish to support the learning of programming for a number of
reasons, not the least of which is additional scholarly and creative design opportunities for their
students. The latter half of the article then discusses the interdisciplinary Texts and Technology
PhD program at the University of Central Florida. It broadly describes the program’s history and
governance structure and then details how a programming course was recently integrated into
the core curriculum. Course goals, assignments, and programming tutorials are discussed and a
few examples of major student projects, such as a Dada-inspired sound poem and an experi-
mental web site that converts short stories into abstract art, are presented and made available
through hyperlinks. The paper concludes by discussing implications for the field and providing a
list of online tutorials and resources that are available for administrators, faculty members, and
students who wish to learn more about programming using any number of popular computer
languages.

Keywords. curriculum reform, computer programming, coding, project-based assessment,
experimental pedagogy, digital literacy, praxis

Given the centrality of programmed tools and technologies in the
everyday lives of students and faculty, a number of pertinent
questions are raised within the domain of program administra-

tion. For example, we may contemplate how our programs position the
role of software in relation to students’ research and creative activities. At

Programming Perspectives in Texts and Technology

214

what point do students in academic programs become active producers,
rather than just consumers, of software? How can software move beyond
organizing one’s professional life and take a more central role in data col-
lection, research, and writing? Further, what role might students play in
designing and developing software tools to build more capable systems?

This paper discusses one course from a humanities doctoral program
in Texts and Technology (T&T) at the University of Central Florida that con-
siders these types of questions. The T&T program has developed a required
programming course within its core curriculum. The course challenges
students to learn enough about programming to develop their own schol-
arly projects using Internet scripting languages. This essay first discusses
the idea of programming as a form of digital crafting, creating interesting
possibilities for digital writing practices. It then provides an overview of
the T&T program, focusing specifically on the design- and development-
oriented course devoted to teaching computer programming as an aspect
of digital literacy. The paper concludes with an annotated bibliography
offering several online resources to students, faculty, and program admin-
istrators who may be interested in learning more about programming.

Programming as Digital Crafting
Under various descriptions such as “critical code studies,” (Marino, 2006),
“procedural literacy” (Bogost, 2007), “digital literacy” (Spilka, 2010), “source
literacy” (Stolley, 2012), and “computational literacy” (Vee, 2013), a number
of scholars make thoughtful connections between computer program-
ming and the intellectual territory of the humanities. These researchers
urge students and faculty to become more familiar with the capabilities
and limitations of programming. They note knowledge about program-
ming provides opportunities for theory building as well as the construc-
tion of unique tools and digital projects. Tools and digital projects devel-
oped by humanities students can then be used for specialized research
and creative activities within their fields.

These applied activities have theoretical implications. For example, Karl
Stolley (2012) champions what he terms “source literacy” as a core philoso-
phy for the field of computers and writing. Source literacy employs digital
craftsmanship as a central idea. Source literacy, in Stolley’s view, means
understanding the craft of digital writing in a more comprehensive fash-
ion, through both technical knowledge of programming and a rhetorical
understanding of the practices and products generated by programming.
Source literacy encourages not only critiquing programmed texts, but also
understanding their computational underpinnings in an informed way.

Programming Perspectives in Texts and Technology

215

For those new to programming, we are at a moment of unprecedented
opportunity for better informing ourselves about software design and
development. An abundance of open-source and popular web-based
scripting or programming languages—such as PHP, Python, and Ruby—
are widely available. These languages are thoroughly documented with tu-
torials, videos, and wikis. Because major commercial sites run using these
technologies, it is easy to find examples to show to students. Additionally,
the distribution of students’ finished projects is easy to manage. Anyone
with a web browser can easily publish materials to the Web and promote
work through social media, blogs, or listserv posts. The number of tutorials
and reference materials continue to increase and become more accessible
for non-technical audiences.

Why Graduate Program Administrators Should Care
about Programming
Despite the accessibility of training materials and the enthusiasm students
often bring to the idea of learning new technical skills, a note of caution is
in order. For example, as program administrators, we often need to temper
excitement for new curricular reform initiatives with the realities of our re-
sources and the political climate in which our programs reside. After all, it
is unusual to be able to affect sweeping changes with the modest financial
support and personnel resources provided to many graduate programs
in the humanities. So, with these caveats in mind, why is integrating a
programming course into a graduate curriculum something a humanities
program administrator might want to consider?

First, technical knowledge is becoming more important for the large
number of humanities students with advanced degress who enter alt-ac-
ademic careers. These careers are represented in job titles such as techni-
cal communicators, content specialists, editors, multimedia designers,
educational content designers, web developers, or information architects.
Students entering industry often interact and communicate with diverse
professionals using project management methodologies derived from the
world of software engineering or product design. Knowledge of coding
and production strategies such as iterative design, agile development,
extreme programming, scrum, and the software development life cycle
(SDLC) (Dicks, 2010) are important for students to understand. Even stu-
dents who do not enter alt-academic careers in industry or research find
value in “speaking the language” of coding and understanding the ways
in which problem solving can be approached from technical perspectives.

Programming Perspectives in Texts and Technology

216

This intellectual common ground is handy when communicating with in-
dustry partners for collaborative purposes. For graduate students who will
be working in research and development (R&D) environments or taking on
positions of academic leadership, these problem-solving abilities in new
textual and technological environments are even more critical.

Second, in the case of students’ publication and creative activities,
there will always be a point in which a preexisting software application
leaves something to be desired for a particular scholarly purpose. For
example, a graduate student investigating whether or not a program such
as Twitter can be used to broadcast emergency messages to employees
within an organization might find it to be suitable at first, but would later
be frustrated by the privacy settings, character limits, distribution model,
or other aspects of the software. Similarly, a newly hired MA graduate
working in industry might attempt to install and deploy a commercial
content management system such as Drupal or WordPress only to discover
certain features do not operate as anticipated. Or perhaps, even worse, the
features are absent altogether. The problem in these examples is that the
software being used for these purposes was designed by individuals who
all exist outside the students’ spheres of influence.

Third, it is important to introduce new ideas about design and usability
into the development of computer software. Bringing humanities students
into design and development roles catalyzes new ways of thinking about
user interface design. It creates opportunities to consider new possibilities
for data architecture and organization and afford new opportunities for
creative experimentation. Technical and professional communication stu-
dents, in particular, have much value to add in creative experimentation.
Technical communication is a profession in which technical communica-
tors need to understand audiences, the tools they use, and the capabili-
ties and limitations of those tools (Swarts, 2013). Further, many technical
communicators already self-identify as designers (Pringle & Williams, 2005).
In addition to documenting processes and procedures of existing software
tools, technical communicators can also use their insights regarding audi-
ences and their informational needs to play a more active role in design
and development.

In sum, a humanistic programmer is a programmer who is also an
expert in practices such as audience analysis, critical analysis, historical
evaluation, communicating, editing, and writing. As program administra-
tors, we create the environments in which this interdisciplinary scholarship
becomes possible. Humanities students who know how to program can
serve as user advocates throughout the design and development pro-

Programming Perspectives in Texts and Technology

217

cess, not just at the end. And while user-centered design practices, hybrid
teams, and participatory design techniques can all act as surrogates for
the direct participation in the coding process by a graduate student in
the humanities, it is the code that determines the interactions and affor-
dances of the software technologies manipulated by end users. Although
it is true that students can create new projects using existing tools rather
than programming them from scratch, it is also true that these extant tools
will shape the direction of the new projects and limit the possibilities of
creative expression.

In the second half of this essay, I discuss efforts to integrate a program-
ming course into the core curriculum of a doctoral program in the humani-
ties. After a discussion of the program’s history, governance structure, and
administration, I delve more deeply into the specific course curriculum
and assignments and provide examples of student programming projects.
The article concludes with a postscript containing ten online resources for
program administrators, students, and faculty who might wish to pursue
programming-related activities within their own academic programs.

The Texts and Technology (T&T) Program
The Texts and Technology (T&T) PhD program is an interdisciplinary hu-
manities doctoral program located in Orlando, Florida. The program was
proposed to the Board of Trustees as a new doctoral program for the UCF
English Department in 2000 and pitched as a unique PhD program that
melded the latest digital technologies with the field of textual studies. The
program accepted its first cohort of graduate students in the fall semester
of 2001. Students enter the program with master’s degrees obtained from
a variety of different academic fields including technical communication,
professional writing, rhetoric and composition, creative writing, literary
studies, history, anthropology, criminal justice, and education.

In 2011, as a result of a program evaluation, the T&T program relocated
from the English Department to the College of Arts and Humanities and
broadened its core faculty to include academic expertise and participa-
tion from additional disciplines outside of English and the newly formed
Department of Writing and Rhetoric. The years from 2011 to 2015 further
broadened disciplinary representation by including new faculty members
from departments such as Digital Media, Philosophy, and History. This
diversifying of expertise is supported by recommendations in the litera-
ture for more broadly interdisciplinary communication programs (Ecker
& Staples, 1997). To maintain curricular focus as areas of faculty expertise
broadened, the curriculum subcommittee worked with the program

Programming Perspectives in Texts and Technology

218

director in 2012 to develop areas of specialization within the program. In
the short term, these areas of specialization guide students toward the
selection of appropriate elective courses and suggest potential committee
members, who are working in those fields, for their dissertation and exam
work. On a long-term basis, the areas help students professionally identify
with existing fields and target and market themselves to particular job
descriptions when entering the academic or industrial job markets.

The T&T program is managed by a program director who reports
directly to the dean of the College of Arts and Humanities. An assistant
director reports to the director and handles a majority of the day-to-day
student issues such as course registration, admissions processing, and rou-
tine correspondence with the Graduate College. The director is in charge
of strategic initiatives for the program, handles the negotiation of teaching
and assistantship placements with departmental chairs, and schedules
monthly meetings of the T&T faculty. These faculty meetings occur three to
four times each academic term.

In terms of program governance, T&T operates according to a set
of program bylaws1 developed by a faculty subcommittee in coopera-
tion with the program director. These bylaws specify the mechanisms for
faculty membership and dictate the types and responsibilities of faculty
subcommittees. For example, when proposing curricular revisions, the
T&T curriculum subcommittee develops the necessary revisions or course
materials and then brings a proposal to the full T&T faculty for a vote.

Building a Programming Course into the Curriculum
Design and Development of T&T2 is a course in the core curriculum of the
T&T program. It is a hybrid, mixed-mode course, in which face-to-face lec-
tures are accompanied by online content and exercises. Students take the
course in their second year, following other core courses such as research
methods, theory, and history. The idea behind the course is simple: pro-
vide doctoral students with enough programming familiarity to complete
their own digital scholarly projects. Although the students can accomplish
such a goal using existing tools, this further allows them to build projects
without requiring them to rely solely on these existing tools and data sets.
In regards to those students who do have project ideas best served by
existing tools, the course provides them with a deeper level of procedural
knowledge. This knowledge enables them to interact with existing tools
through application programming interfaces (APIs), custom data queries,

1 See ‹http://tandt.cah.ucf.edu/files/BYLAWSFinal10_30_13.pdf›.
2 See ‹ http://rudymcdaniel.com/pubs/pp/files/aa_syllabus.pdf ›.

Programming Perspectives in Texts and Technology

219

and other advanced mechanisms for interfacing with both commercial and
open source software and databases.

The Design and Development course requires students to read six core
texts as well as a small number of supplemental online readings from vari-
ous sources to augment specific topics in the class. For example, roughly a
third of the course is spent talking about scholarship in the digital hu-
manities. Readings include Stephan Ramsay (2011), the Switching Codes
edited collection (Bartsherer & Coover, 2011), an article from Wendy Chun
and Lisa Rhody (2014) recounting a roundtable MLA discussion about
the “Dark Side of the Digital Humanities,” Alien Phenomenology from Ian
Bogost (2012), How We Think by N. Katherine Hayles (2012), and The Design
of Future Things by Donald Norman (2007). These texts examine aspects of
design and development in various theoretical and practical ways.

Each of the chosen texts relates to programming in a different way, and
sometimes those relationships are not immediately obvious. For example,
Bogost’s Alien Phenomenology was not included due to any particular
excellence in explaining the process of object-oriented programming, but
rather because it takes on the difficult task of considering objects outside
the usual paradigm of human-centered analysis, the correlationalist model.
Such an unusual, or alien, perspective is helpful in directing students to-
ward a mode of carefully considering the forms and functions of everyday
objects and, in turn, helps them to conceptualize their own object design
and development during that portion of the course. This text serves as a
bridge-building discussion opportunity for the students to discuss similari-
ties and differences between object-oriented theories and object-oriented
programming practices. It also allows them to consider objects in more
precise detail than their everyday use might normally require. For example,
one discussion posting exercise, “Objects 15 Ways,” required students to
write fifteen different definitions for everyday objects. They accomplished
this using various definitional approaches (e.g., instrumental, operational,
socio-cultural, technical, physical, and functional). This followed a practice
in the text in which Bogost defined everyday objects in a similar fashion.
The course exercise helped students recognize the difference between
communication practices in natural language, in which context and jargon
can be loose and ambiguous, versus programming language, in which
details must be exhaustively and precisely listed.

Course Goals
A primary course goal is for students to better develop their understand-
ings of computational media. Students in the Design and Development

Programming Perspectives in Texts and Technology

220

course are taught to understand the procedural affordances of digital
software. They are taught how to solve problems using available function-
ality and resources. This problem solving might allow students to identify
the appropriate data structures to hold different types of information or
understand the appropriate methods for packaging similar units of code
into functions or objects for re-use and efficiency. Or, it might mean using
divide-and-conquer techniques to decompose a larger problem into small-
er and more manageable units. Combined with their knowledge of rheto-
ric, history, writing, critical thinking, participatory design, user-centered
design, and communication, this knowledge makes them versatile for a
number of academic and industrial tasks. This type of functional digital lit-
eracy, which some scholars have termed procedural literacy (Bogost, 2007),
involves students’ recognition of the unique capabilities of texts (broadly
considered) as they exist in digital form. Students begin the course with a
digital pre-test3 that gauges their current knowledge about programming.

Another course goal is to change the way in which students think
about programming. For instance, despite the rigidity with which pro-
gramming syntax is often crafted, programming is very much a creative ac-
tivity. Even seemingly straightforward programming problems can usually
be solved in a variety of ways. Selecting a particular approach is a creative
act in and of itself. Creativity also requires developers to work around
the limitations imposed by language and resources, a situation familiar
to many students through their studies about writing for different audi-
ences and different rhetorical contexts. Matthew G. Kirschenbaum (2009)
describes programming as creative in the sense that it teaches us how to
solve constrained problems. This process often requires us to change our
perspectives of the world. He notes the importance of modeling creativity
and reminds us models can be constructed in a variety of ways, so even
building something as simple as a retail inventory can be pursued in a
number of different ways. It is also true, though, that modeling becomes
more useful when it combines with one’s knowledge of the world and
how things happen inside that world. Building an accurate and functional
model means one must understand not only the particular components to
be modeled, but also the relationship of this model with the environment
in which it is to be integrated.

From Theory to Practice: Project Assignments
As this course was conceptualized as a means of delivering technical skills
while also situating the tools critically within relevant theoretical models,

3 See ‹http://rudymcdaniel.com/pubs/pp/files/ab_pretest.pdf›.

Programming Perspectives in Texts and Technology

221

the projects require students to synthesize theory and practice. The first
digital project assignment,4 for example, incorporates theoretical ideas
from Stephen Ramsey (2011), Marcel O’Gorman (2006), and other scholars
exploring the intersections between computation and the humanities.
Ramsey’s (2011) work tackles the complex task of exploring the differences
and similarities between humanistic scholarship and the quantitative
work done by computing machines. Central to his writing is an analysis of
computing from the perspective of literary studies and the humanities; he
notes the difficulty in relating humanities discourse with computer-based
processes, pointing out that humanistic methods and computational
methods are frustratingly different.

A significant challenge, then, in moving from theory to practice is
explaining to students how to temporarily suspend those important
intellectual strategies or behaviors that we have worked so hard to teach
them during their first year of study. This shift from theory to practice
complicates prior tactics such as challenging binary dichotomies, ques-
tioning the social and cultural constructions of language and identity, and
approaching the understanding of textuality from multiple perspectives.
When learning how to communicate with a computer, students must learn
to be binary communicators: direct, unequivocally precise, and straightfor-
ward. Semantically, they must remember to write down every single step
in a series of rules; omitting even an obvious step is an insurmountable
obstacle for most computer programs. In terms of syntax, even the omis-
sion of a single character, such as a semicolon, can lead to hours of frus-
trating troubleshooting. After working through only three grueling weeks
of learning how to program, however, student programmers are able to
produce an array of interesting projects5 including text adventure games,
love sonnet generators, interactive fiction experiments, and specialized
tools for research and information retrieval.

Learning to Program, One Week at a Time
The primary instructional mechanisms for teaching the students how to
program are found in a series of required Codecademy tutorials linked to
each week in the course. Lectures and face-to-face discussions focus on
the readings for each week and the students use their additional online
work time to complete Codecademy tutorials. Student questions are an-
swered using our course content management system’s (CMS’s) discussion

4 See ‹http://rudymcdaniel.com/pubs/pp/files/ac_project1.pdf›.
5 See ‹http://www.rudymcdaniel.com/pubs/pp/files/ad_p1_examples.pdf›.

Programming Perspectives in Texts and Technology

222

boards. Additional instructional videos are also created and uploaded to
the CMS by the instructor.

Codecademy was launched in 2011 and rose to prominence with its
“Hour of Code” iPhone application. The application contained bite size les-
sons teaching users how to program in popular languages such as JavaS-
cript, Python, and Ruby (Dredge, 2013). A key strategy employed by both
the Hour of Code initiative and Codecademy is to release code in small
chunks delivered using a gentle pace, so as not to overwhelm novice users.
The accompanying web site6 uses an interactive prompt that shows the
results of coding in real time. This strategy allows learners to immediately
see feedback and receive coaching when they make a mistake. The Codec-
ademy interface uses three primary panels. The leftmost pane is an in-
structional panel with background information about the topic. It provides
instructions for appropriate syntax and usage for whatever coding feature
or concept is being presented. The middle panel displays a code file that a
student can edit. As the student edits the file, the results are displayed in
a panel to the right. When errors appear, the system provides additional
feedback to help learners figure out what went wrong.

By combining instructional information, editing capabilities, and
output displays, the Codecademy interface makes the once highly distrib-
uted task of learning how to program a little bit easier. Without this type
of system, a student would need to edit and save files on a local computer,
upload these files to a remote server, then access the remote files using a
browser. When something did not work as anticipated, the student would
need to consult various help files to determine why the files were not
working as imagined. Combining everything into a single instructional ap-
plication makes this process less onerous for beginners.

In terms of choosing a specific programming technology to learn,
beginning programmers are encouraged to choose PHP. This scripting
language is heavily documented with tutorials, books, and enthusiast
web sites. It has additionally been used to develop tutorials specifically for
technical communication tasks, such as building single-sourcing systems
for documentation (Applen & McDaniel, 2009). PHP is also fairly forgiving
to new programmers. For example, rather than requiring a developer to
specify an initial “type” for every variable used in the program, the lan-
guage only requires “strong typing” for certain types of complex variables,
such as objects and arrays. More advanced programmers can choose to
use a language they have not yet learned, such as Python or Ruby.

6 See ‹www.Codecademy.com›.

Programming Perspectives in Texts and Technology

223

Aside from its helpful chunking of programming lessons into digest-
ible modules, Codecademy also excels in providing feedback and encour-
agement to students as they make incremental progress in the course. A
bar chart shows progress in specific skills and topics as students progress
through the course modules. In addition, course badges, similar to those
used in modern console video games, are “unlocked” as students complete
modules within the site. Students can also return to the web site at any
time to view their progress, as represented through their skills interface
and badge collection, on the Codecademy web site.

Major Projects
Procedural literacy encompasses knowledge of digital rules, models,
and algorithms, elements that may eventually become more central to
a modern humanities education (Kirschenbaum, 2009). Creating a fuller
understanding of procedural information processing necessitates a type of
digital writing that relies upon the programmatic affordances enabled by
digital technologies. In other words, students need to create projects that
do more than just display printed text on the screen. However, it is also im-
portant that familiar conceptual anchors are provided to topics with which
the students are already comfortable. This makes the creation of projects
focused on familiar material an important component of the course. As
such, the following projects are assigned:

• A rough project7 based on the design and development of a
“potential literature machine.”

• A polished and iteratively designed improvement of the first
project.

• A final project8 to build a “T&T memex machine,” or a database
combining information archiving and retrieval with theoretical
ideas from course readings or outside sources.

Expecting students to build fully polished and perfectly functioning proj-
ects in this small amount of time, especially as beginners, is unreasonable.
Students are instead encouraged to craft with a goal in mind. They are
counseled to not become too discouraged if everything does not come
together in the way they had initially hoped and imagined. By the end of
the most recent semester, however, students learned the skills to build a
rough yet functioning prototype of a database-driven web application
using MySQL. They were able to design and develop their own preliminary

7 See ‹http://www.rudymcdaniel.com/pubs/pp/files/ac_project1.pdf›.
8 See ‹http://www.rudymcdaniel.com/pubs/pp/files/ae_final_project.pdf›.

Programming Perspectives in Texts and Technology

224

data sets using database tables and then perform basic database opera-
tions (e.g., INSERT, UPDATE, and SELECT) with those data using PHP scripts.
Better yet, they created database-driven web applications that did not yet
exist prior to their efforts, and that suggested new ways of conceptualizing
relationships between audiences, ideas, and technologies.

For example, one student designed a final project that enables visi-
tors to create, upload, and peruse Dada-inspired sound poems.9 Another
developed a utility and algorithm for converting short stories into abstract
expressionist artworks.10 The overarching purpose of teaching these stu-
dents how to program was to provide them with the skills with which to
complete these hybrid projects. They were advised to use these skills in a
creative fashion to meet their own research goals. Such an effort required
knowledge about their own research interests in the arts and humanities
as well as knowledge about coding and database construction.

Conclusion
Experiences in designing and teaching this type of course suggest that
learning programming is challenging for students, but also very rewarding.
The act of programming catalyzes new forms of digital writing and affords
diverse, interactive, and creative forms of scholarship. Even so, program
administrators and faculty members who wish to integrate a focus in pro-
gramming into their own classes and curriculum will need to be patient. It
is not reasonable to expect that humanities students who have never had
any exposure to programming will be proficient programmers after only
a single course. It is recognized within the computer science literature, for
example, that it takes ten years to transform a novice programmer into an
expert (Winslow, 1996). This learning curve is likely even steeper in disci-
plines outside of computer science.

Even within a landscape constrained by these challenges, this course
within the T&T program provides a study of how programs might tackle
the issue of programming web-based digital crafting within a humanities
curriculum. Educators in other programs who wish to follow suit might
adopt other methods entirely, perhaps by focusing on programmable tools
or teaching students how to program statistical analysis software. What-
ever the method employed, program administrators and educators in the
humanities should never adopt the position that programming is neces-
sary to address some deficit within our students that needs to be remedied

9 See ‹http://www.rudymcdaniel.com/pubs/pp/files/af_final_project_examples.pdf›.
10 See ‹http://www.rudymcdaniel.com/pubs/pp/files/af_final_project_examples.pdf›.

Programming Perspectives in Texts and Technology

225

by teaching them more applied technical knowledge. The idea is in fact
the reverse: teaching humanities students how to program adds value to
the existing body of interactive and electronic media by introducing more
diverse ideas from the humanities into computer software.

Programs wishing to explore computer programming within their own
curricula should first survey the landscape to determine if programming is
an activity that students wish to pursue and faculty members find worth-
while. Next, educators should determine the resources necessary to inte-
grate programming competencies into their courses. This decision raises
questions about faculty training, resources, lab space, and a myriad of
other procedural and technical issues. Having these conversations within
and between program administration communities is a valuable step
in training graduate students in the humanities and making them more
versatile in both skill and knowledge. A promising side effect is that these
experiments in programming are also adding significant value to existing
sources of electronic software and scholarship.

These types of intellectually risky digital crafting exercises deserve fur-
ther encouragement through curricular strategies in humanities programs.
As program administrators, we can help create the academic climates in
which such experimentation is rewarded and supported. Included in the
Postscript are references and resources that may be useful to program
administrators and educators interested in learning more about program-
ming.

Postscript: Online Resources for Learning Program-
ming
Following is an annotated list of ten online resources, helpful to students
and faculty members for learning to program or for brushing up on the
newer features of programming languages. Some resources are free and
some require modest subscription fees.

1. Code.org (‹www.code.org›)

Code.org is the online portal for a non-profit organization that was
launched in 2013 to expand participation in computer program-
ming and increase the availability of easy-to-use tools and tutori-
als. The organization specifically caters to women and underrepre-
sented students of color. Each year, an “Hour of Code” event is held
collaboratively at schools across the world and there are a number
of tutorials and curricular ideas organized on the web site.

Programming Perspectives in Texts and Technology

226

2. Codecademy (‹www.codecademy.com/›)

Codecademy is an interactive site that lets users work through a
series of online lessons to learn the basics of programming. The
site incorporates a wide range of programming languages includ-
ing HTML, CSS, JavaScript, PHP, Python, and Ruby. All courses are
free to use.

3. Code School (‹www.codeschool.com›)

Code School is another site that allows users to work through
online lessons in languages including Ruby, JavaScript, HTML/
CSS, iOS, and Git. Visitors to the site can browse through specific
courses in the paths and there is an “elective” series to allow users
to venture off the beaten path. Many courses are free, but monthly
subscription rates are also available.

4. Lynda.com (‹www.lynda.com›)

In addition to video tutorials for popular graphical software such
as Adobe Photoshop, this site offers video tutorials in a number of
different areas that include programming. The videos are created
by industry professionals and experts, and the videos range in dif-
ficulty from beginning to advanced-level content. A membership is
required to access the videos.

5. Safari (‹www.safaribooksonline.com›)

For those who prefer to learn from books, Safari’s online library
contains both videos and technical texts in electronic book format
from major publishers of technical tutorials and programming
references. Individual and team subscriptions can be purchased on
a monthly or yearly basis.

6. SQLZOO (‹sqlzoo.net›)

This site offers free, interactive tutorials in SQL, or the structured
query language, designed for communicating with databases. The
site offers a comprehensive approach to learning the language and
ranges from tutorials for the beginner to those who already have
SQL coding experience.

7. Treehouse (‹www.teamtreehouse.com›)

This site provides a combination of video tutorials and interactive
workspaces to help novice programmers learn to code. The tutori-

Programming Perspectives in Texts and Technology

227

als often result in projects, meaning the user learns the code along
the way. The site has a free trial period and a “basic” and “pro” op-
tion for monthly subscription services.

8. Udacity (‹www.udacity.com›)

This site provides video lectures and interactive activities to help
students learn tech skills needed to stand out in the workplace.
The site provides what they call “Nanodegrees” ™ that provide
industry credentials. Udacity is free to use.

9. Udemy (‹www.udemy.com›)

This site offers a wide variety of video courses in development.
While the majority of the courses cost money to use, some of the
content is free. The coursework spans numerous coding languages
and software. Both beginners and advanced learners find compat-
ible content.

10. W3schools.com (‹www.w3schools.com›)

This site offers tutorials and chapters for several programing
languages including HTML, CSS, JavaScript, SQL, PHP, and JQuery.
This site is not as fully interactive as some of the ones described
previously, but the examples are clear and efficient. The site is free
to use.

References
Applen, J. D., & McDaniel, Rudy. (2009). The rhetorical nature of XML. New York:

Routledge.
Bartscherer, Thomas, & Coover, Roderick. (Eds.). (2011). Switching codes: Thinking

through digital technology in the humanities and the arts. Chicago: The University
of Chicago Press.

Bogost, Ian. (2007). Persuasive games: The expressive power of videogames. Cam-
bridge: The MIT Press.

Bogost, Ian. (2012). Alien phenomenology, or, what it’s like to be a thing. Minneapo-
lis: University of Minnesota Press.

Chun, Wendy H. K., & Rhody, Lisa. M. (2014). Working the digital humanities: Un-
covering shadows between the dark and the light. Differences, 25(1), 1-25.

Dicks, R. Stanley. (2010). The effects of digital literacy on the nature of technical
communication work. In Spilka, Rachel (Ed.), Digital literacy for technical commu-
nication: 21st century theory and practice (pp. 51-81). New York: Routledge.

Programming Perspectives in Texts and Technology

228

Dredge, Stuart. (2013). Codecademy: Hour of Code app teaches programming
skills to iPhone owners. The Guardian. Retrieved from ‹http://www.theguardian.
com/technology/2013/dec/09/codecademy-hour-of-code-iphone-app›

Ecker, Pamela. S., & Staples, Katherine. (1997). Collaborative conflict and the future:
Academic-industrial alliances and adaptations. In Selber, Stuart A. (Ed.), Com-
puters and technical communication: Pedagogical and programmatic perspectives
(Vol. 3, pp. 375-387). Santa Barbara, CA: Greenwood Publishing Group.

Hayles, N. Katherine. (2012). How we think: Digital media and contemporary techno-
genesis. Chicago: University of Chicago Press.

Jenkins, Henry. (2006). Convergence culture: Where old and new media collide. New
York: New York University Press.

Kirschenbaum, Matthew G. (2009). Hello worlds: Why humanities students should
learn to program. Chronicle of Higher Education, 50, B10-B12. Retrieved from
‹http://chronicle.com/article/Hello-Worlds/5476›

Marino, Mark. (2006, December 4). Critical code studies. Electronic Book Review.
Retrieved from ‹http://www.electronicbookreview.com/thread/electropoetics/
codology›

Norman, Don A. (2007). The design of future things. Philadelphia: Basic Books.
O’Gorman, Marcel. (2006). E-crit: Digital media, critical theory and the humanities.

Toronto: University of Toronto Press.
Pringle, Kathy, & Williams, Sean. (2005). The future is the past: has technical com-

munication arrived as a profession? Technical Communication, 52(3), 361-370.
Ramsay, Stephen. (2011). Reading machines: Toward an algorithmic criticism. Ur-

bana: University of Illinois Press.
Spilka, Rachel. (2010). Digital literacy for technical communication: 21st century

theory and practice. New York: Routledge.
Stolley, Karl. (2012, October 10). Source Literacy: A Vision of Craft. Enculturation.

Retrieved from ‹http://www.enculturation.net/node/5271›
Swarts, Jason. (2012). How can work tools shape and organize technical communi-

cation? In Johnson-Eilola, Johndan, & Selber, Stuart A. (Eds.), Solving problems in
technical communication (pp. 146-164). Chicago: University of Chicago Press.

Vee, Annette. (2013). Understanding computer programming as a literacy. Literacy
in Composition Studies, 1(2), 42-64.

Winslow, Leon E. (1996). Programming pedagogy—a psychological overview. ACM
SIGCSE Bulletin, 28(3), 17-22.

Author information
Rudy McDaniel is an associate professor of digital media for the School of
Visual Arts and Design at the University of Central Florida. He is a graduate
of the Texts and Technology doctoral program and is currently its direc-
tor. In addition, he serves as assistant dean of research and technology for
the College of Arts and Humanities. Rudy’s research currently focuses on
game-based design, narrative, and organizational knowledge manage-

Programming Perspectives in Texts and Technology

229

ment. He is co-author of The Rhetorical Nature of XML (Routledge, 2009) and
has published in journals including Technical Communication, Communica-
tion Design Quarterly, the British Journal of Educational Technology, Presence,
Educational Technology & Society, and Information Systems Management. He
is also technical editor and Co-PI for the Charles Brockden Brown Electronic
Archive and Scholarly Edition, funded by the National Endowment for the
Humanities. Although his primary academic field is in digital media, he
considers technical communication a second home and regularly attends
conferences within the technical and professional communication commu-
nity.

